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Abstract 

With the advancement of remote sensing technologies, hyperspectral imagery has 

garnered significant interest in the remote sensing community. These developments 

have inspired improvement in various hyperspectral images (HSI) classification 
applications, such as land cover mapping, amongst other earth observation 

applications. Deep Neural Networks have revolutionized image classification tasks 

in areas of computer vision. However, in the domain of hyperspectral images, 

insufficient training samples have been earmarked as a significant bottleneck for 
supervised HSI classification. Moreover, acquiring HSI from satellites and other 

remote sensors is expensive. Thus, researchers have turned to generative models to 

leverage the existing data to increase training samples, such as particularly 

generative adversarial networks (GAN). This paper explores the use of a vanilla 
GAN to generate synthetic data. The network employed in this paper was built 

using a deep learning python package, PyTorch and tested on a popular HSI 

dataset called Indian Pines dataset. The network achieved an overall accuracy of 
64%. While promising, there is still room for improvement. 
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INTRODUCTION  

Hyperspectral Imagery uses sensors to remotely capture an object's spectral and spatial 

properties [1]. A hyperspectral image (HSI) contains reflected radiance in hundreds of 

narrow or wide bands on the electromagnetic spectrum [2]. In an RGB image, a pixel has 

information in three channels, namely red, green and blue. However, in an HSI, a pixel 

includes spectral data in several bands being recorded, usually in the hundreds. This puts 

into perspective the rich information present in an HSI. The ability to capture rich data 

with HSI's garnered interest in many fields for classification tasks. For instance, in [3], 

drone-based hyperspectral imagery was used to remotely detect algal pigmentation at 

different water depths. Meanwhile, other works use satellite-based hyperspectral imagery 

for land cover classification and change detection [4][5].  

The use of HSI's can also be seen in widespread real-world applications ranging from 

the medical field [6] to industries such as food [7][8] and agriculture [9][10]. Many 

supervised learning models have been explored in the space of hyperspectral image 

classification. Before the recent success of Deep Neural Network (DNN) seen in areas of 

computer vision such as image classification [11], traditional supervised learning 

algorithms such as K Nearest Neighbor (KNN) and maximum likelihood were used [1].  

However, due to the nature of HSI being high in dimensionality, these algorithms 

weren't able to perform on them effectively. Support vector machines (SVMs) can handle 

high dimensionality and are shown to be good spectral classifiers [1]. However, SVM's fall 

short when handling spatial and spectral features in the data [12][13]. Deep learning 
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models, particularly Convolutional Neural Networks (CNN), are better suited for extracting 

spatial-spectral features. This is the case for several reasons, for instance, their ability to 

learn latent features in a hierarchical manner comprising customizable layers. Each layer 

progressively retains more abstract features. For example, in [14], lower layers extract low-

level features such as edges while higher layers learn higher-level features such as faces. In 

[13], the properties of CNNs were exploited for HSI classification, and their work showed 

promising results. Several other deep learning networks have also been proposed for HSI 

classification, such as Autoencoders (AE) [15] and Recurrent Neural Networks (RNN)[16].  

DL models are known to be "data hungry"; they require a large amount of data. On the 

other hand, there is a limited number of training samples in HSI classification due to the 

cost and intensive labor required to gather and label data [12]. Although there has been 

progress in using the DL model for HSI classification, the lack of training data makes DL 

models prone to overfitting, that is, performing well on the training dataset but showing 

suboptimal performance in the test dataset [11]. Hence, it is imperative to devise ways to 

largen existing datasets as it is critical to the performance of DL models. Data 

augmentation is a popular method used in various domains of computer vision to improve a 

model's robustness to overfitting. For example, simple geometric operations such as 

rotating and shifting the image proved an effective strategy [17][18]. Another interesting 

approach to the problem becoming increasingly popular is using Generative Adversarial 

Networks (GAN) to generate synthetic data. GAN's are powerful in learning the 

distribution in a dataset and outputting desired samples [19]. 

This paper explores the use of GAN's on a popular dataset, i.e., Indian Pines, in the 

domain of hyperspectral image classification. The paper's contribution is to design a GAN 

model that generates real samples to increase training datasets. The rest of this paper is 

structured as follows. Section 2 briefly highlights the main theory behind GANs. Section 3 

breakdowns the training method used, followed by the experimental setup and results and 

discussion in Section 4 and Section 5, respectively. Finally, Section 6 draws the conclusion 

and future perspectives. 

 

MATERIAL AND METHOD 

Generative Adversarial Networks Theory 

GANs are a class of generative models comprising two neural networks: discriminator 

(D) and generator (G). The role of the generator network is to generate samples, G(z), by 

estimating the probability distribution in a dataset. These generated samples are then fed as 

input to the discriminator one input, while the other input is real samples from the dataset 

(x). The role of the discriminator network is to distinguish between fake and real images, 

illustrated in Figure 1.  
 

 
Figure 1. The architecture of GANs [1] 
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Essentially, the generator's objective is to fool the discriminator into thinking that the 

samples generated are real. These networks are trained in an adversarial manner, hence the 

term Generative Adversarial Networks. This groundbreaking model, introduced by 

[20][21], showed great potential in generating desired samples and was applied to various 

computer vision applications [19].  
 

Training Generative Adversarial Networks 

Training GAN's involves training two separate networks simultaneously, thus making it 

a more difficult task than training other machine learning models. To successfully train a 

GAN, both networks must be optimized to perform their respective task, i.e., the generator 

is optimized to fool the discriminator. In contrast, the discriminator is optimized to call the 

generator's bluff. The initial step in the training process is to feed the generator with a 

randomized input noise (z), as shown in Figure 1. This input noise is a fixed-length vector 

drawn from a gaussian distribution. The vector size corresponds to the size of real samples 

in the dataset. The generator produces a fake sample, G (z, θg), where θg are the network 

parameters. The fake sample, alongside a real sample, is fed to the discriminator network D 

(x, θd), where θd are the network parameters. The discriminator outputs a single scalar, D 

(x), which denotes the probability that x comes from the data rather than the generator G. 

Up until this point is the feed-forward part of the training process. 

 GAN's fall under the category of unsupervised learning. However, an attractive 

property of training them is that they are trained in a supervised manner. The next step 

after forward propagating the inputs (i.e., feed-forward) is backpropagation. 

Backpropagation is a method of calculating the gradient of the neural network to optimize 

a loss function. A loss function is a function that determines how well a network models 

the dataset. In the case of GAN's, backpropagation isn't straightforward as there are two 

networks to train simultaneously. Thus, there are two loss functions to optimize in one 

iteration. The discriminator D is trained to maximize the probability of assigning a correct 

label to both actual training data and fake examples generated by the generator G. The loss 

function is the binary cross entropy. Simultaneously, G is trained to minimize log (1 − D 

(G (z))). GAN's have a minimax objective function, that is,  

max(G)min(D) V (D,G) = Ex~pdata(x) [log D (x)]+ Ez~pz(z) [log (1 - D (G (z)))]                (1) 

where log D (x) is the cross-entropy between [1 0]T and [D (x) 1 − D (x)]T, meanwhile log 

(1 − D (G (z))) is the cross-entropy between [0 1]T and [D (G (z)) 1 − D (G (z))]T . 

The following are the steps to train GAN's: 

1. Initialize the random vector, z, by sampling from a Gaussian distribution. 

2. Input z into the generator. Generator outputs G (z, θg). 

3. Input G (z, θg) and real sample into discriminator outputs D (x, θd). 

4. Backpropagate using loss function for discriminator, only optimizing the discriminator. 

5. Freeze layers of the discriminator, and backpropagate using the loss function of the 

generator to optimize the generator. 

6. Repeat steps 2 to 6 until convergence. 

 

Experimental Setup and Dataset  

The dataset used in this experiment is the Indian Pines dataset. It contains  145x145 pixels 

and 224 spectral bands. In this paper, 200 spectral bands are adopted for analysis. The Indian 

Pines dataset contains 16 vegetation classes. The false-color image (bands 50, 27, 17) and its 

ground truth are shown in Figure 2a and Figure 2b, respectively. Figure 3 shows the number 

of classes along with the number of labelled samples. 
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a)                                                              b) 

Figure 2. a) False color composite image of the Indian Pines Dataset [22] b) Ground Truth of Indian Pines 

dataset [22] 

 

 
Figure 3. 16 classes and the number of samples per class 

 

GAN Model 

The network design modifies the 3D-GAN used in [1]. Notably, two main differences exist 

in the approach taken between the two designs. Firstly, in [1], PCA analysis was used to 

reduce the dimensions of the data. This allows for a lack of feature extraction in the spectral 

band. We deviate from using PCA and thus use a deeper layer to construct the generator and 

discriminator. 

The model was built using PyTorch, a popular python deep learning framework and is 

implemented on google collab. At the time of writing, google collab offers a free GPU, 

namely Tesla T4, with 16 GPU of RAM. 

 

RESULTS AND DISCUSSION 

The classification results of the Indian Pines dataset compared to previous work are shown 

in Table 1. The three metrics used to evaluate the performance of the network are Overall 

Accuracy (OA), Average Accuracy (AA) and Kappa coefficient (Kappa). The overall 

accuracy is the ratio of the total samples correctly classified. At the same time, the kappa 

coefficient pertains to the number of samples correctly classified and the number of samples 

incorrectly classified. As can be seen, the best-performing algorithm reported is CA-GAN 

[23]. Perhaps the use of an attention mechanism and long-short term memory (LSTM) layer, 

such as in [24], can be used to retain spectral-spatial features. However, our model 

outperforms HSGAN on all metrics while outperforming 3D-GAN on average accuracy. 
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Another takeaway from the results is the use and effectiveness of Principal Component 

Analysis (PCA). In the benchmark algorithms, PCA was used to reduce the dimensionality of 

the dataset. However, in this research, PCA was not used. In order to compare the 

effectiveness of PCA, we compare the time used to train the model and benchmark it against 

the other models. This is shown in Table 2. As can be seen, all the other models take 

significantly less time to train than our GAN model. This is due to the high dimensionality 

present without using PCA. On the other hand, CA-GAN takes longer than the rest of the 

models. According to [24], this could be attributed to the number of parameters in the 

attention and convLSTM layers [25][26].  
 

Table 1. Performance of GAN on Indian Pines dataset compared to another model [24] 

 Model 
Overall Accuracy (OA) 

% 

Average Accuracy (AA) 

% 

Kappa 

% 

1 GAN* 92 ± 0.6 86 ± 1.8 88 ± 0.5 

2 HSGAN [26] 74.0±0.9 60.2±2.6 70.0±1.0 

3 CA-GAN [24]    97.4±0.5 95.2±2.2 97.0±0.6 

4 3D-GAN [1] 93.5±0.3 84.8±2.7 93.1±1.2 

 

Table 2. Runtime of models. Results of other models adapted from [24] 

 Model 
Training time 

(s) 

1 GAN* 3456 ± 0.2 

2 HSGAN [26] 444.7 ± 73.1 

3 CA-GAN [24]    712.9 ± 3.1 

4 3D-GAN [1] 597.67 ± 60.8 

 

CONCLUSION 

HSI image classification continues to draw interest in remote sensing due to its 

breakthrough in recent years. Insufficient labelled data has been one of the main bottlenecks 

in supervised learning using state-of-the-art deep learning methods. This paper used a vanilla 

GAN to generate new training samples and discussed the approach's components. It has 

shown promising results that proved that GAN's could be used to create synthesized data and 

thus help with limited training samples. However, there is still room for improvement. Future 

studies can be conducted to improve the generalization capabilities of GAN's to learn the 

deeper latent structure and truly exploit the capabilities of supervised learning deep learning 

models.  
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