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Abstract 

In this research, an intelligence collision avoidance system on a mobile 

robot was designed using the AlexNet image classifier method. AlexNet is 

a convolutional neural network architecture that managed to win the 

ImageNet Large Scale Visual Recognition Challenge in 2012. The dataset 

consists of three categorical labels: blocked right, blocked left, and free. 

Images of 224 x 224 pixels were trained into two CNN architectures: 

AlexNet and ResNet-18. The performance of both architectures was 

examined in a testing environment. The system was built without real-time 

obstacles, instead using the side boundaries of the test lane. Analogously, 

if the mobile robot moves either through the side lane or off track, then 

these conditions are defined as a crash. From the entire research that was 

done, it was determined that intelligence collision avoidance models based 

on AlexNet were the most reliable models, with an average accuracy 

deviation rate of 6,00%. The true pre-trained AlexNet adopted from 

PyTorch Transfer Learning had 92.22% overall accuracy, while the non-

trained AlexNet achieved 90.81% accuracy. It is also supported by the 

evidence that Intelligence Collision Avoidance Model-1 and Model-3 

based on AlexNet didn’t lead the mobile robot to spin out and were stable 

in the test lane. 
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INTRODUCTION 

Artificial Intelligence (AI) is a field in computer science that is aimed at making 

software and hardware capable of thinking, such as humans. AI is widely used to solve 

problems in areas such as business, robotics, natural language, mathematics, games, 

perception, medical diagnosis, engineering, financial analysis, scientific analysis, and 

reasoning [1][2]. Deep learning (DL) is the deepest structure of AI based on artificial 

neural networks (ANN), which has been widely used in recent years. DL is divided into 

three main tasks: supervised learning, unsupervised learning, and reinforcement learning. 

DL is very suitable for solving classic problems in computer vision, namely image 

classification. One method in DL that is often used in image processing is convolutional 

neural network (CNN), which is the enhancement of multi-layer perceptron by providing 

deep neural network layers.  

The control of mobile robot motion has been incorporated into deep learning systems for 

robotics. Research on perceptual capabilities in robotic systems has been greatly influenced 

by the DL model [3]. Different techniques can be used to create collision avoidance 

systems for mobile robots. The Improved Artificial Potential Field (IAPF) and PID 

Adaptative Tracking Control Algorithm [4] are two collision avoidance techniques that 

have been developed, as well as a mid-vehicle collision avoidance system based on fuzzy 

https://creativecommons.org/licenses/by-sa/4.0/
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inference [5]. A collision avoidance system may also be designed using a straightforward 

perceptron network [6]. 

A mobile robot will be used to test the implementation of the proposed research's 

intelligence collision avoidance system, which will be constructed using DL principles. 

The model's performance will be assessed in the testing environment once the collision 

avoidance method, which is based on prediction probability, is utilized. The testing area 

consists of two different test lanes with no actual barriers. Instead, side lane boundaries are 

referred to as the barriers or obstructions that will be used as test cases to determine how 

an intelligent system based on the AlexNet image classifier method would be able to 

resolve the current problem. The intelligent collision system is supposed to be capable of 

identifying and correctly anticipating the side lane, ensuring that the robot does not collide 

or deviate from the test track. The ResNet-18 architecture is also incorporated to develop 

the intelligence collision avoidance model as a performance comparison indication 

between AlexNet and ResNet-18.  

 

METHOD 

The research methodology determines the research objectives: first, to know how to design 

an intelligent collision avoidance system using AlexNet, and second, to evaluate the 

performance of the model. A literature review is carried out in order to find the references for 

the proposed project, then the research kit is designed and built. Later, the research kit will be 

examined in a testing environment. The model is analyzed according to the mobile robot's 

performance in the arena and taken as the final conclusion. The methodology shown in Figure 

1.  

Based on a literature review, neural networks are the best method to design a collision 

avoidance system. CNN based on AlexNet could produce image classification performance 

with a low overfitting rate [7, 8, 9, 10]. The NVIDIA Jetson Nano B01 would be the preferred 

processing unit over the Raspberry Pi since it has a dedicated Maxwell GPU. As for the DL 

Frameworks, PyTorch is suitable for low-end devices such as the Jetson Nano B01 since it 

can reduce the bottleneck effect between CPU and GPU [11, 12, 13, 14, 15]. 

 

 
Figure 1. Research Methodology 
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Figure 2. Hardware Assembly 

 

Hardware Assembly 

Figure 2 show the hardware assembly that construct the mobile robot components. The 

Waveshare Robot Kit was used to construct the mobile robot's components. Because it 

decreased design time, the produced robot kit was chosen as the primary option. The 

IMX219-160 webcam serves as an input device. The microprocessor was the NVIDIA Jetson 

Nano B01, while the output block included the TB6612FNG Motor Driver and two DC 

motors. The NVIDIA Jetson Nano B01 was chosen as the robotic system microcontroller 

since it has DL requirements. The Jetson Nano is equipped with a Cortex-ARM A57 CPU and 

a dedicated Maxwell GPU [16][17]. Image processing can be done correctly with Compute 

Unit Device Architecture support. Figure 3 depicts the CAD design of the mobile robot kit. 

The package's operating system (OS) is packed as a system image that is available on the 

official NVIDIA developer forum through NVIDIA JetPack v4.3. Figure 3 shows the mobile 

robot design that construct using Waveshare Robot Kit. 

 

Environment Design 

Figure 4 show the environment design which contains the lane boundaries that represents 

in Figure 5. There were two types of tracks established: circuit and sprint. The test tracks were 

built at the scale depicted in Figure 5. They were given a colorful ribbon at the track's border 

that acts as the arena's barrier. 

In general, the collision avoidance technique that was developed is unique. In this study, 

no physical barriers were placed in the arena; instead, we used the track's border as 

impediments. The concept of a crash is stated to be present when the robot exceeds the track 

limit, as seen in Figure 6. 

 

 
Figure 3. Mobile Robot Design 
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Figure 4. Environment Design 

 

 
Figure 5. Side Line Boundaries 

 

   
(a)                                           (b) 

Figure 6. Scheme of (a) Maneuvering, (b) Crash State 

 

The identical approach was applied to both test tracks by creating exterior limits in the 

form of black bars. As depicted in Figure 6(a), the intelligent collision avoidance system is 

supposed to steer the robot into the arena without striking the black barrier. If the robot 

reaches the track's black boundary or travels outside of the track's outer barrier shown in 

Figure 6(b), the algorithm has failed to produce an accurate forecast.  

Intelligence collision avoidance is programmed based on the user-specified threshold value 

for the anticipated label value provided by CNN's softmax function. There are three sorts of 

labels: blocked_left, blocked_right, and free. For example, if the robot detects the route edge 

and the obstacle is classed as blocked_left with a probability value greater than the threshold, 
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the robot should shift to the right, avoiding contact with the black edge and going off-track. 

This rule applies to the whole labels. 

The dataset was divided into three groups, each with 75 photos measuring 224 by 224 

pixels. The complete data set of 225 photos was divided about 80% for training and 20% for 

testing. There are no definitive criteria for determining the best or optimal ratio for a specific 

dataset [18]. The 80:20 ratio is just an explanation for the notion known as Pareto's notion 

[19]. The division ratio difference is noticeable in small datasets, while division ratios of 70% 

and 80% definitely work better on large datasets [20][21]. 

 

Methods 

To aid user understanding in system planning, a flowchart is presented. In summary, the 

system process begins with data collection, model training, and model evaluation, as shown in 

Figure 7.  

During the initial step, the user connects in to the JupyterLab Integrated Development 

Environment (IDE) through a remote server on a wireless network (Wifi). JupyterLab is 

controlled by the user using the Python programming language [22][23]. The dataset folder is 

created at the root and the IMX219-160 webcam feed is launched which capable to capture 

3280 x 2464 resolution and real time monitoring. The data collection step is when you collect 

the datasets that will be utilized to train the model. The dataset was taken using the camera's 

capture function and saved in a folder based on the label category. Following the completion 

of the dataset collection, the next phase is model training. The torchvision.transform package 

is used to preprocess the picture data. Torchvision is a PyTorch package that includes CNN 

and transfer learning models [24][25]. After the model has been trained, the model's 

performance is evaluated in a test environment. Its goal is to evaluate the model's 

performance. At this point, it is unclear if the model can successfully avoid collisions. Figure 

8 show the mobile robot observation flow when perfom using IMX219-160. 

System initialization begins by ensuring that the complete system can start, run smoothly, 

and is ready for use. Connect the server device (Jetson Nano) to the Wi-Fi network. The next 

step is to start streaming the webcam from the IMX219-160 camera. This indicates that the 

server device is ready for use in taking and storing photos for the dataset. Intelligence 

Collision Avoidance is built by using a pre-trained CNN model, loading the model, and 

starting ROS. After successfully loading ROS into the system, the mobile robot may begin 

moving down the track. 

When obstacles are detected and predicted, a probability distribution mechanism for the 

indicated obstacle types on the track is initiated. For each predicted category, a probability 

threshold of 0.5 is used. When the greatest likelihood value matches to a certain category, the 

robot's orientation is maneuvered or rotated. This method is repeated throughout the robot's 

journey. When the user reaches the end of the track, he or she manually issues an order to stop 

the robot's motor movement. 

 

 
Figure 7. System Flow 
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Figure 8. Mobile Robot System Flow 

 

This experiment proposes six models of intelligent collision avoidance. The six models are 

separated into three AlexNet-based models and three ResNet-18-based models. All models 

will be put through their paces on a test track. Table 1 lists the model's spesifications. 

TRUE Pre-Trained is a transfer learning model with inherited weights and biases. In 

contrast, with the FALSE PRE-TRAINED, the model must retrain the neurons' weights and 

biases. The initial model employs 20 epochs, which are expanded to 40 in succeeding models. 

The model overview of AlexNet is provided in Table 2. This summary is part of the 

PyTorch torchvision package and is accessible via the model.summary() function. The model 

overview is intended to help people understand how the model is developed. AlexNet 

includes 21 sequential layers in total, 5 convolutional layers and 3 fully linked layers. It 

contains around 61 million trainable parameters. 

 

Table 1. Proposed Models 
Model Architecture Pre-Trained Epochs 

1 AlexNet TRUE 20 

2 AlexNet FALSE 20 

3 AlexNet FALSE 40 

4 ResNet-18 TRUE 20 

5 ResNet-18 FALSE 20 

6 ResNet-18 FALSE 40 
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Table 2. AlexNet Model Summary 
AlexNet 

# Layer (type) Output Shape Param# 

1 Conv2d [-1, 64, 55, 55] 23,296 

2 ReLU [-1, 64, 55, 55] 0 

3 MaxPool2d [-1, 64, 27, 27] 0 

4 Conv2d [-1, 192, 27, 27] 307,392 

5 ReLU [-1, 192, 27, 27] 0 

6 MaxPool2d [-1, 192, 13, 13] 0 

7 Conv2d [-1, 384, 13, 13] 663,936 

8 ReLU [-1, 384, 13, 13] 0 

9 Conv2d [-1, 256, 13, 13] 884,992 

10 ReLU [-1, 256, 13, 13] 0 

11 Conv2d [-1, 256, 13, 13] 590,08 

12 ReLU [-1, 256, 13, 13] 0 

13 MaxPool2d [-1, 256, 6, 6] 0 

14 AvgPool2d [-1, 256, 6, 6] 0 

15 Dropout [-1, 9216] 0 

16 Linear [-1, 4096] 37,752,832 

17 ReLU [-1, 4096] 0 

18 Dropout [-1, 4096] 0 

19 Linear [-1, 4096] 16,781,312 

20 ReLU [-1, 4096] 0 

21 Linear [-1, 1000] 4,097,000 

 

Nonetheless, an overview of ResNet-18 is provided in Table 3. This transfer learning 

model includes 68 total sequential layers, including 18 depth levels. ResNet-18 is slightly 

more sophisticated than AlexNet in terms of the number of successive layers. Because of its 

complexity, building a ResNet-18 model may necessitate a lengthier computing procedure, 

particularly during the network training phase [18]. 

 

Table 3. ResNet Model Summary 
ResNet-18 

# Layer (type) Output Shape Param# 

1 Conv2d [-1, 64, 112, 112] 9,408 

2 BatchNorm2d [-1, 64, 112, 112] 128 

3 ReLU [-1, 64, 112, 112] 0 

4 MaxPool2d [-1, 64, 56, 56] 0 

5 Conv2d [-1, 64, 56, 56] 36,864 

6 BatchNorm2d [-1, 64, 56, 56] 128 

7 ReLU [-1, 64, 56, 56] 0 

… … … … 

… … … … 

… … … … 

60 Conv2d [-1, 512, 7, 7] 2,359,296 

61 BatchNorm2d [-1, 512, 7, 7] 1,024 

62 ReLU [-1, 512, 7, 7] 0 

63 Conv2d [-1, 512, 7, 7] 2,359,296 

64 BatchNorm2d [-1, 512, 7, 7] 1,024 

65 ReLU [-1, 512, 7, 7] 0 

66 BasicBlock [-1, 512, 7, 7] 0 

67 AvgPool2d [-1, 512, 1, 1] 0 

68 Linear [-1, 1000] 513,000 
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RESULTS AND DISCUSSION 

This chapter discusses the analysis of the training and testing phase's outcomes. The first 

round of testing was supplying the ROS parameter value that was associated to the robot's 

motor speed and the projected threshold value. Overall model performance was determined by 

the amount of time each model took to train, the actual prediction accuracy, and the frequency 

of spin-outs along the observation. 

Because the mobile robot's kinematic planning and route planning were not included in this 

study, those values were decided based on user subjectivity. ROS settings are 0.125 and 0.1 

for forward and left-right motor speeds, respectively as listed in Table 4. The selected value 

produced a positive response in conjunction with the wheel traction. The prob_threshold 

setting of 0.5 might improve the robot's mobility by removing excessive spin. The time 

necessary to complete the training phase was recorded using an external timer. Table 5 

displays the findings of the observation. 

Model-1 and Model-4, both with pre-trained status and the same number of epochs, may be 

compared linearly. The sole distinction is the architectural foundation. This is likewise true 

for the Model-2 and Model-5, as well as the Model-3 and Model-6. Overall, AlexNet has a 

shorter training time than ResNet-18 [18]. 

The system's real performance in a test environment was used to determine the correctness 

of each model. The training accuracy rate was compared to the real-time accuracy. As a 

crucial indication, we used the accuracy numbers from the network training stage's test set. 

 

Table 4. ROS Parameter 
ROS Parameter 

speed.forward 0.125 

speed.left 0.1 

speed.right 0.1 

prob_threshold 0.5 

*ROS Parameter values given based on subjectivity 

since kinematic planning & analysis were not 

included in the research 

 

 

Table 5. Training Duration 
Model Architecture Duration 

1 AlexNet 09:41:882 

2 AlexNet 12:02:656 

3 AlexNet 17:41:154 

4 ResNet-18 13:40:752 

5 ResNet-18 19:55:357 

6 ResNet-18 32:43:104 

 

 

Table 6. Prediction Accuracy Comparison 

Model 
Test  

Accuracy 

Real Accuracy 

Circuit Sprint Overall 

1 1.00 0.9252 0.9191 0.9222 

2 0.85 0.8453 0.7341 0.7897 

3 0.95 0.9118 0.9043 0.9081 

4 1.00 0.6290 0.5038 0.5664 

5 1.00 0.8120 0.8404 0.8262 

6 1.00 0.7570 0.6223 0.6897 
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Table 7. Deviation Rate 
Model Dev Dev (%) AVG DEV 

1 0.0779 7.79% 

6.00% 2 0.0603 6.03% 

3 0.0419 4.19% 

4 0.4336 43.36% 

30.59% 5 0.1738 17.38% 

6 0.3104 31.04% 

 

According to the data in Table 6, the accuracy of some models from the training stage can 

exceed 1.00. These figures, however, are not trustworthy since we discovered evidence that 

those models were unable to achieve the accuracy generated from the training step. When the 

system's forecast was tested in the test environment, a deviation occurred. Table 7 shows the 

overall deviation values. 

AlexNet has an overall accuracy deviation of 6.00%. ResNet-18, on the other hand, has a 

concerningly low average deviation of 30.59%. This scenario implies that ResNet-18 models 

have been overfitted. This overfitting problem would not have been discovered if the actual 

performance test had not been performed. 

 

Spin Out Rate 

In this study, "spin out" is a self-described condition. It is a situation in which the label 

prediction mistake happens repeatedly, causing the robot to spin in the wrong direction or to 

go off track. A "crash" state includes a "spin out" situation. The data shown below was 

derived from observations of mobile robot movement behavior. Spin out happens when the 

system constantly makes incorrect predictions, as seen in Figure 9. The robot recognizes the 

left boundary of the track and, according to the collision avoidance software, should do a 

right-hand maneuver. When a false prediction occurs repeatedly, the robot continues to spin, 

either in the wrong direction or off the track.  

This metric can tell us how well the intelligence collision avoidance model performs. The 

spin out condition is relevant to the model's real accuracy. The poorer the model prediction 

accuracy, the more frequently the robot would spin off during testing. 

 

  
Figure 9. Spin Out Scheme 

 

Table 8. Spin Out Rate 

Model 

Circuit Sprint 

Observation 

Time 

Spin 

Out 

Observation 

Time 

Spin 

Out 

1 01:47:40 N/A 01:39:60 N/A 

2 03:14:31 4 02:53:13 9 

3 01:42:70 N/A 01:55:62 N/A 

4 02:04:61 5 04:24:07 16 

5 02:13:12 4 02:43:53 3 

6 01:57:14 6 03:08:91 9 
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(a)             (b) 

Figure 10. Captured Frame of (a) Right Maneuver and (b) Left Maneuver. 
 

The ResNet-18 architecture is untrustworthy for building intelligent collision avoidance on 

mobile robots based on the facts supplied above. This is due to the ResNet-18-based models' 

proclivity to spin out mobile robots during observation. The Spin out rate can be observed by 

calculate the observation time over both the circuit or the sprint itself, shown in Table 8. 

Using Model 1, the robot completed the track in 1 minute and 47 seconds, with no spin-outs. 

Model 2 performs in 03 minutes 14 seconds with 4 times spin-outs in circuit and in 02 

minutes and 53 seconds with 9 times spin outs. Table 8 evaluates the model performance of 

spin-outs scenario using the whole model. Figure 10 shows the captured frame while the robot 

observed the track. 
 

CONCLUSION 

This section includes an overview of the findings as well as a commentary. This section is 

split into two sections. The first is learning how to develop an intelligence collision avoidance 

on a mobile robot utilizing the AlexNet image classifier approach, which is relevant to the 

study purpose. Second, determine the performance of the chosen technique. 

Intelligence Collision Avoidance on Mobile Robot was constructed in steps that included 

building hardware, configuring systems, writing collision avoidance programs, modeling test 

trajectories, and finally testing the real model. The Waveshare Robot Kit was used to build the 

robot's hardware, which sped up the assembling process. The NVIDIA Jetson Nano B01 was 

chosen as the microcomputer because it is capable of image processing. The Intelligent 

Collision Avoidance System was created with PyTorch as the DL framework and a CNN-

based technique. The models were built using the transfer learning model. The test pathways 

are used as a testing environment to evaluate the model's real predicted performance. A 

competent model can anticipate the track's edge based on the label category, ensuring that the 

robot does not touch or exit the track. 

Based on the results of the experiments, the accuracy value produced from the neural 

network training stage cannot be confirmed as a model performance indicator. To evaluate the 

model's real performance, it should be tested in a test environment. With a very short training 

period and a 6.00% average accuracy deviation, the Intelligence Collision Avoidance model 

based on the AlexNet image classifier approach was demonstrated to be the more dependable 

method when compared to ResNet-18. The best models were the Model-1 and Model-3, as 

indicated by no spin outs during the test.  
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